PHYLOGENY OF DINOFLAGELLATES BASED ON MITOCHONDRIAL CYTOCHROME b AND NUCLEAR SMALL SUBUNIT rDNA SEQUENCE COMPARISONS
نویسندگان
چکیده
Despite their evolutionary and ecological importance, dinoflagellate phylogeny remains poorly resolved. Here we explored the utility of mitochondrial cytochrome b (cob) in inferring a dinoflagellate tree and focused on resolving the relationship between fucoxanthin-and peridinin-containing taxa. Trees were inferred using cob and small subunit rDNA alone or in combination as concatenated data and including members of the six major dinoflagellate orders. Many regions of the cob DNA or protein and rDNA trees were congruent with support for the monophyly of Symbiodinium spp. Freudenthal and of the Prorocentrales and the early divergence of Crypthecodinium cohnii Seligo in Grasse. However, these markers provided differing support for the monophyly of Pfiesteria spp. Steidinger et Burkholder (only supported strongly by rDNA) and of the fucoxanthin dinoflagellates with Akashiwo sp. (Hirasaka) Hansen et Moestrup (Gymnodiniales, only supported strongly by the cob data). The approximately unbiased (AU) test was used to assess these results using 13-and 11-taxon (excluding apicomplexans) backbone maximum likelihood trees inferred from the combined cobþ rDNA data. The AU test suggested that our data were insufficient to resolve the phylogenetic position of Symbiodinium spp. and that the ancestral position of C. cohnii might have resulted from long-branch attraction to the apicomplexan outgroup. We found significant support, however, for the association of fucoxanthin dinoflagellates with Akashiwo sp. The monophyly and relatively derived position of the Gymnodiniales in our cob DNA and protein trees and in the cobþ rDNA tree is consistent with the tertiary endosymbiotic origin of the plastid in fucoxanthin dinoflagellates. Key index words: cob; cytochrome b; dinoflagellates; phylogeny; rDNA; tertiary endosymbiosis
منابع مشابه
Nuclear, Mitochondrial and Plastid Gene Phylogenies of Dinophysis miles (Dinophyceae): Evidence of Variable Types of Chloroplasts
The Dinophysis genus is an ecologically and evolutionarily important group of marine dinoflagellates, yet their molecular phylogenetic positions and ecological characteristics such as trophic modes remain poorly understood. Here, a population of Dinophysis miles var. indica was sampled from South China Sea in March 2010. Nuclear ribosomal RNA gene (rDNA) SSU, ITS1-5.8S-ITS2 and LSU, mitochondri...
متن کاملPhylogeny of yeasts and related filamentous fungi within Pucciniomycotina determined from multigene sequence analyses.
In addition to rusts, the subphylum Pucciniomycotina (Basidiomycota) includes a large number of unicellular or dimorphic fungi which are usually studied as yeasts. Ribosomal DNA sequence analyses have shown that the current taxonomic system of the pucciniomycetous yeasts which is based on phenotypic criteria is not concordant with the molecular phylogeny and many genera are polyphyletic. Here w...
متن کاملSpliced Leader RNAs, Mitochondrial Gene Frameshifts and Multi-Protein Phylogeny Expand Support for the Genus Perkinsus as a Unique Group of Alveolates
The genus Perkinsus occupies a precarious phylogenetic position. To gain a better understanding of the relationship between perkinsids, dinoflagellates and other alveolates, we analyzed the nuclear-encoded spliced-leader (SL) RNA and mitochondrial genes, intron prevalence, and multi-protein phylogenies. In contrast to the canonical 22-nt SL found in dinoflagellates (DinoSL), P. marinus has a sh...
متن کاملRelative patterns and rates of evolution in heron nuclear and mitochondrial DNA.
Mitochondrial cytochrome b sequence data from 15 species of herons (Aves: Ardeidae), representing 13 genera, were compared with DNA hybridization data of single-copy nuclear DNA (scnDNA) from the same species in a taxonomic congruence assessment of heron phylogeny. The two data sets produced a partially resolved, completely congruent estimate of phylogeny with the following basic structure: (Ti...
متن کاملPhylogeny and genetic diversity of Bridgeoporus nobilissimus inferred using mitochondrial and nuclear rDNA sequences.
The genetic diversity and phylogeny of Bridgeoporus nobilissimus have been analyzed. DNA was extracted from spores collected from individual fruiting bodies representing six geographically distinct populations in Oregon and Washington. Spore samples collected contained low levels of bacteria, yeast and a filamentous fungal species. Using taxon-specific PCR primers, it was possible to discrimina...
متن کامل